
Fast Radial Search for
Progressive Photon Mapping

BACHELORARBEIT

zur Erlangung des akademischen Grades

Bachelor of Science

im Rahmen des Studiums

Technische Informatik

eingereicht von

Alexius Rait
Matrikelnummer 11777774

an der Fakultät für Informatik
der Technischen Universität Wien

Betreuung: Dr.techn. Michael Wimmer
Mitwirkung: Stefan Ohrhallinger, PhD

Wien, 01.10.2022
(Unterschrift Verfasser) (Unterschrift Betreuer)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Fast Radial Search for
Progressive Photon Mapping

BACHELOR’S THESIS

submitted in partial fulfillment of the requirements for the degree of

Bachelor of Science

in

Computer Engineering

by

Alexius Rait
Registration Number 11777774

to the Faculty of Informatics
at the Vienna University of Technology

Advisor: Dr.techn. Michael Wimmer
Assistance: Stefan Ohrhallinger, PhD

Vienna, 01.10.2022
(Signature of Author) (Signature of Advisor)

Technische Universität Wien
A-1040 Wien � Karlsplatz 13 � Tel. +43-1-58801-0 � www.tuwien.ac.at

Erklärung zur Verfassung der Arbeit

Alexius Rait
Barmhartstalstraße 109

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwende-
ten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit –
einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im
Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Ent-
lehnung kenntlich gemacht habe.

(Ort, Datum) (Unterschrift Verfasser)

iii

Kurzfassung

Um das Problem der Global Illumination effizient zu lösen, wurden über die Jahre zahlreiche
Algorithmen entwickelt, einer davon – Photon Mapping – dient speziell dafür, Kaustikeffekte
zu simulieren. Das wird im Algorithmus erreicht, indem man Photonen nicht direkt von einer
Lichtquelle bis zum Auge verfolgt, sondern zuerst deren Auftrefforte auf diffusen Flächen in
einer Datenstruktur speichert, um später Photonen nahe bestimmter Suchpunkte zu finden. Diese
Schritt ist besonders rechenintensiv, da für jede Iteration Millionen von Suchvorgängen gestartet
werden müssen.

In dieser Arbeit werden wir die Performance zweier verschiedener räumlicher Datenstruk-
turen und deren in CUDA geschriebenen Suchalgorithmen vergleichen.
Beide Algorithmen wurden in einem Open-source Progressive Photon Mapping Projekt [11]
implementiert und getestet. Für die Implementierung wurden Teile von S. Reinwalds Bachelor-
arbeit Fast-kNN verwendet [9].

iv

Abstract

Global illumination is critical to realistic rendering and as such many different algorithms were
developed to solve it, one of which – photon mapping – was designed to efficiently render
caustics and indirect lighting. It achieves this by saving photons in a data structure during the
first step and then using the result by collecting photons near specific search origins. This step
is very time intensive due to the sheer amount of searches performed each iteration.

In this paper, we will compare the performance of two spatial data structures and parallelized
search algorithms written in CUDA for the GPU by execution time and memory usage for the
photon-gathering use case. The algorithms were implemented in an open-source progressive
photon mapping project [11] and are using parts of S. Reinwald’s fast-KNN as a basis [9].

v

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Method . 3

2 Related Work 4

3 Technical Background 6
3.1 Spatial hash grid . 6
3.2 Fast-KNN . 7

4 Implementation 8
4.1 3D Spatial hash . 8
4.2 Radial search . 9

5 Optimizations 12

6 Performance 14

7 Conclusion 19

Bibliography 20

vi

CHAPTER 1
Introduction

Photon Mapping is a two-pass rendering algorithm developed by Henrik Wann Jensen [3] in
the early 2000s designed to more efficiently simulate refraction of light. Instead of tracing the
complete path from eye to light source, light is collected on diffuse surfaces and stored in a
photon map, before being used to calculate luminance on said diffuse surfaces in the photon
gathering step. This method has an advantage over other Monte-Carlo ray tracing algorithms
such as path tracing [4] when it comes to light traveling through multiple specular surfaces (eg.
light shimmering at the bottom of a swimming pool), which otherwise would only have a small
chance to be sampled.

In 2008, two of his colleagues (Toshiya Hachisuka, Shinji Ogaki) and Henrik improved on
the algorithm by allowing the user to execute an arbitrary amount of photon mapping passes to
render scenes more accurately without requiring memory to store all photons at once [2].

1.1 Motivation

During photon gathering a search for nearby photons is made for each screen pixel. For this
reason photons should be stored in a spatial data structure in a way that allows quick local
access. The most straightforward way to achieve this is to partition space into a 3D grid and use
the search coordinates as indices. Each grid element then references an either sufficiently large
or dynamic array with all photons at that grid cell.

This solution is not ideal from a memory locality standpoint however as cells next to each
other are not necessarily stored in a close-by location in memory. In practice the arrays of each
cell are combined into one big array, while a hash table stores the starting memory location or
index and the size of each (previously) individual array as shown in Figure 1.1. Doing this while
arranging cells based on their position in space is called spatial hashing.

After this change photons that are in neighbouring cells on the x coordinate are close together
in memory and we can read a whole line at once but changing either the y or z coordinate can
still lead to jumps in memory location as seen in Figure 1.2.

1

Figure 1.1: Example of a packed array, here a 2D coordinate is used to find a cell which then
contains an index (upper left) and length (lower right) to describe an area in the packed array,
empty cells would contain a length of 0

Alternatively, we can project photons on a 2D grid and use the projected coordinates for
our search. This way the memory locations for a search in the packed array are put into bigger
contiguous groups, since they are ordered by 2 coordinates instead of 3, thereby improving the
cache usage. Conversely, the search overhead is increased by projecting photons that are far
from our search origin based on the projection’s z-axis into the same cell as the photons we want
to find.

Figure 1.2: Spatial locality of the 3D grid. Searching through a 3 by 3 by 3 area sequentially,
the memory location jumps 3 times as much compared to in a similar 2D grid.

Since photon gathering is a memory-intensive operation and a big time loss during photon
mapping the goal of this paper is to compare the efficiency in terms of execution time of both
methods, 3D spatial hashing and a new 2D-based radial search.

2

1.2 Method

We have the following problem statement: Given a set of points and search origins in R3 and
a threshold for each search origin, let A denote the set of points that are nearer to the search
origin in euclidean distance than the threshold. The algorithm should return a super-set of A
for each search origin.

Finding points that are farther will not affect the produced image, as their effect is removed
by the distance attenuation factor, but will still slow down the query and should be avoided
where possible. Since it is used for progressive photon mapping [2] the algorithm is run once
per iteration, each time with a different set of points.

As stated in the previous section the goal is to project the points into a 2D grid. Before ren-
dering, a projection is chosen based on the scene. Using that projection, all points are assigned
to specific cells in the grid based on their projected x- and y-coordinates as seen in Figure 1.3
(cells cover equal areas of equal form in the projection; a cell can contain multiple points).

Figure 1.3: Projecting photons into a 2D grid. After projecting into screen-space (screen width
and height of projection in the figure are set to 4, same as grid size), a point’s x- and y-coordinates
are rounded to the nearest integer to find the cell position.

The content of all cells is packed into an array based on cell position with a specific ordering
scheme (see section 3.1 Spatial hash grid). This data structure was chosen over kd- or quad-tress
to offer better control over the searched areas (see section 5 Optimizations). As the last step of
data structure construction, an additional helper data structure containing information necessary
to index specific cells is also created.

Finally, by projecting the search areas (spheres) and calculating which cells intersect, it
becomes possible to find the super-set of A.

The existing 3D grid algorithm which we compare to works much in the same way except
that instead of doing a projection the grid extends in 3 dimensions with cubic cells.

A more detailed explanation can be found in Chapter 4 Implementation.

3

CHAPTER 2
Related Work

Finding neighbours in a data set is a common problem in numerous applications and has been
worked on by many over the years. If the problem consists of finding data points under a certain
distance from a search origin for example, the primitive solution would be to compare every
data point to every search origin, yielding a time complexity of O(kn), where k is the number
of search origins. To optimize the resulting algorithm we can parallelize it to k independent
searches. Since photon mapping requires multiple searches per rendered pixel this number scales
up quickly (in the order of millions). A GPU is ideal for doing these types of calculations. We
used S. Reinwald’s CUDA implementation for the k-nearest neighbour search as a reference for
our program [9].

The other possibility would be to reduce the n factor by limiting the search area. Using a
spatial data structure makes it possible to quickly skip areas that lie outside of the search bounds.
Vincent C. H. Ma et al. designed an approximate kNN (k-nearest neighbours) search based on
a Hilbert curve hash function [5]. It works by ordering photons based on the curve, creating
contiguous blocks with a fixed amount of photons in each and creating multiple slightly different
hashing tables to refer to every block intersecting specific areas. A search is done per hashing
table (skipping over blocks that were read beforehand) to make sure neighbouring photons are
found in edge cases.

In their work Toward Practical Real-Time Photon Mapping: Efficient GPU Density Estima-
tion M. Mara et al. compared many different ways of realizing photon density estimation for
photon gathering [6] and categorized these approaches.
The first categorization is based on what is iterated through first. Solution one consists of going
through each photon and drawing its effect on the neighbouring surfaces. This can be done by
creating a bounding volume around each photon representing its area of effect and issuing a
draw call for it. The advantage of this method consists of making use of the graphics mode of a
GPU instead of a compute shader and being generally better supported, since it is what GPUs are
designed for. The bounding geometry may be fully 3D (simpler to program since only the size
changes not the shape, but slower due to how much geometry is created) or a billboard (which
has to be skewed and scaled first depending on projection).

4

The other solution is what is typically referred to as gathering, where for each pixel nearby pho-
tons are found and their contribution is summed up. This is done with a compute shader and
allows more flexibility on how much to optimize for performance or quality by sub-sampling.
Subcategories of this solution most notably include a 3D hash grid and a 2D tiled algorithm.
For the 2D tiled algorithm, their use of a perspective projection with a similar field of view and
direction as the scene camera improved cache usage and yielded the best results. In our test
application however it made execution time dependent on camera placement – looking at large
surfaces at a tight angle slowed the algorithm down substantially – so we chose to use a different
projection instead. This effect can be avoided if only one photon is stored by cell as stated in the
following paragraph.

For further optimization of the hash data structure, Wann Jensen and Hachisuka stipulated
that one can avoid packing an array altogether by simply only using one photon per cell at
random and multiplying its flux by the number of photons that would have been mapped to that
cell [1]. The resulting image will need more iterations to converge but the algorithm will use
much less time per iteration. We will however not go into further detail on that alternative as the
resulting algorithms would converge at different speeds depending on how the grid is laid out,
thereby making comparison difficult.

To implement and compare our search algorithm we used the git project Accelerated Stochas-
tic Progressive Photon Mapping On GPU, which uses a fixed size 3D hash grid (hash function
orders by x then y then z) to store photons [11].

5

CHAPTER 3
Technical Background

3.1 Spatial hash grid

A spatial hash grid is a data structure to efficiently store and retrieve data using 2 or more
coordinates as an index. The hashing function defines in which order the grid elements are
stored and is used to retrieve them. Depending on the application a reverse hashing function
needs to be found which converts an index back to coordinates. Possible ways to order elements
include left to right and top to bottom, z-order, or Hilbert curve order.

(a) Left to right and top to bot-
tom, index: 53

(b) Z-order, index: 27 (c) Hilbert-curve order, index: 28

Figure 3.1: Different hashing function output for coordinates (5,3)

Since the previously implemented 3D grid in the test program uses the first ordering scheme
despite being worse for spatial locality and could be implemented with any of those we chose to
make use of the same one to offer a better comparison.

6

3.2 Fast-KNN

Fast-KNN is a CUDA algorithm to efficiently solve the KNN problem in two dimensions de-
veloped by S. Reinwald [9] and D. Schoerkhuber [10]. It does this by partitioning space in a
quad-tree, the elements of which are saved in a packed array and creating additional buffers that
contain index and element count of each quad-tree cell similar to a hash grid.

Using the element count buffers a search radius is then estimated for efficient searching. If
the element count does not match the minimum and maximum required the algorithm performs
another iteration with an adjusted radius. [9]

This was used as a basis for the radius search. The quad-tree aspect was removed in our
implementation since we wanted to compare performance with a fixed radius algorithm and a
radius estimate was as such not necessary. We also changed the ordering of cells in the packed
array from Z-order to left to right, top to bottom for the same reason.

7

CHAPTER 4
Implementation

In this chapter, we will first go over the existing 3D spatial hash algorithm briefly and then
explain our projection-based radial search in more detail.

4.1 3D Spatial hash

The existing algorithm separates its photons based on a grid with cubic cells, changing the
dimensions based on the bounding box of the scene (in our test cases they are at 32x32x32).
These photons are stored in a spatial hash grid (see Chapter 3.1).

Construction of data structure

Photons are first stored in a dense array and receive a key based on their rounded down position
(i+xdim ∗ j+xdim ∗ydim ∗k where xdim, ydim ∈ N denote the grid dimensions and i, j, k ∈ N
stand for the position based on grid coordinates). Using the CUDA function thrust::sort_by_key
the photons are then sorted, which means they are ordered by their respective cell’s z then y then
x position (elements of the same cell in no particular order). An array containing the starting
index of each cell is created by comparing each element’s grid position g with the previous one’s
and setting the starting index of the g cell to that element if it is different (for empty cells that
number stays at -1).

Search

For a search, the cell containing the search origin and 26-connected cells are inspected sequen-
tially using loops.

8

4.2 Radial search

Our algorithm separates its elements based on a 128x128 grid (testing showed this to be the best
subdivision in powers of 2 for our test setup) and also uses a spatial hash grid (see Chapter 3.1).

Overview

While there are a few differences in the implementation, the algorithm generally can be thought
of as a 3D spatial hash (see Chapter 4.1) with a changed hashing function (due to the ortho-
graphic projection) and a different search area (instead of a 1 by 1 by 1 cube, a cylinder spanning
the near and far plane of the projection is searched).

The following arrays are used to store photons:

• radialSearchNumBuffer[gridDimX ∗ gridDimY] : uint
Contains the number of photons that fall in each cell, ordered left to right, top to bottom

• radialSearchPackedIndices[gridDimX ∗ gridDimY] : uint
For each cell contains the starting index for elements of that cell in radialSearchPacked-
Photons.

• radialSearchPackedPhotons[numPhotons] : photon
Contains all photons in a packed array.

Program initialization

Once per program execution a projection is selected based on the diffuse objects in the current
scene. The projection should be chosen in such a way that

∑
F |Fnormal • view| ∗Farea over all

diffuse faces F is maximized. Choosing a bad projection, for example orthographic with (0,0,-1)
view direction in our test scene, increases the execution time by around 2 orders of magnitude.

In our solution, we forego calculating the ideal projection and use (1,1,1) as a view direction
and an orthographic projection instead. To make sure all objects fit in the image fully, the height
and width of the projection are chosen by computing a bounding box, rotating it with the view
matrix and selecting the maximum and minimum of the x and y coordinates. The transformation
is saved in a view projection matrix.

Since the grid we project on stays the same size, we need to compensate our search radius
for different scene sizes to make sure the search area in world space stays the same. The search
radius is divided by the projection size and multiplied by the grid size.

At this point, the search radius is further reduced to compensate for the area difference
between the circle itself and the area of intersected grid cells to make for a better comparison
of both methods. The formula was determined by a regression analysis tool using area ratio
data from a python script. The script tested circles of radius from 1 cell length to 10 in 0.25
increments and changed their center in 0.1 increments. The formula for area ratio between a
circle’s surface and the intersected cells was tested to be around 1 + 1.2727/radius for that
range.

9

Construction of data structure

For every photon, we multiply its position with our view projection matrix and then transform
the coordinates from view space to a screen space that represents our grid (128x128). For each
grid cell, photons that would fall into it are counted and the result is written into the numBuffer.

In the next CUDA kernel, the starting index of each cell is computed by summing the num-
Buffer elements of previous cells and written into the packedIndices array. This is done sequen-
tially in a for loop, but since this part is only executed once per iteration the effect on execution
time is negligible.

Photons are written into the packedPhoton array in parallel. To avoid collisions, their index
is set to be the starting index plus the result of an atomic increment operation.

1 // Photon packing function
2 photon p;
3 width, height = GRIDSIZE;
4 pos = projectIntoScreenSpace(orthoMat, width, height, p.position);
5 if (onScreen(pos)){
6 // hashing function; GRIDSIZE is used for both dimensions
7 idx = pos.x + GRIDSIZE * pos.y;
8 //the writeBuffer used for packing starts with all zeros
9 offset = atomicAdd(writeBuffer[idx], 1);

10 targetIdx = radialSearchPackedIndices[idx] + offset;
11 radialSearchPackedPhotons[targetIdx] = p;
12 }

Search

The search origin is projected into our 2D grid space and we define a search area around that
origin with the radius set at initialization. For every grid row that is intersected, we get the index
of the first photon of the leftmost intersected cell and the index of the last photon of the rightmost
intersected cell and go through every photon in-between including those two. This is done to
limit additional memory accesses to radialSearchNumBuffer and radialSearchPackedIndices.

To find the first and last cell of a row, we calculate the maximum circle width in the bounds
of that row by inserting into the circle equation x =

√
r2 − (y − v.y)2 (where v stands for the

search origin) using y in grid coordinates (whole numbers). We substitute y + 1 for y if the
current row is above the search origin (this represents the y position of the lower border of that
row) and 0 for (y − v.y) if the search origin is on the same row (effectively making that case
x = r). The case differentiation is shown in Figure 4.1. The first and last intersected cells of

that row lie on v ±
[
x
0

]
.

10

Figure 4.1: Width calculation; yellow: since we need the lower border we need to add 1 to get
the y position with the largest width; orange: at the center we use the full radius

11

CHAPTER 5
Optimizations

This chapter contains all optimizations that were either implemented or at least tested during
this project’s lifetime.

Search Area

Early versions of the algorithm searched an n by n area on the grid. The higher resolution per
direction of our data structure compared to the 3D grid (128 against 32) allowed us to skip cells
on the edges of that n by n area that would have been too far from the search origin entirely.
This improved execution time by about 10ms for the dragon scene (Figure 6.1). As stated in
Chapter 4.2 the radius was later also reduced to better reflect what the search area of the previous
algorithm would be in 2D (3 by 3 out of 32 by 32). To make sure the generated images stay
correct we compared them after a set number of iterations to a reference picture using peak
signal-to-noise ratio.

Hashing function

When creating the algorithm we started by using a z-order hashing function because fast-KNN
was built with a quad-tree data structure and had packed them this way for that reason. During
development one of the optimizations done consisted of reducing read accesses to the numBuffer
and indexBuffer by only looking at the first and last photon indexes of cells neighbouring each
other in memory. This coupled with the search area change from before was not a viable option
for a z-ordered grid as shown in Figure 5.1. Changing from z-order to left-to-right, top-to-
bottom did not incur a significant execution time increase however. We also tested ordering by
the y coordinate first but no significant time loss or gain was measured.

12

Figure 5.1: Neighbouring cells in z-order when searching in a circle, each different hue (15)
represents a separate area with start and end being a darker color.

Grid size

Over the course of development, a few different grid sizes have been tested. At first, due to the
algorithm using a quad-tree only dimensions in powers of two were possible. Now any grid size
divisible by 4 is valid but due to variation between scenes and only small differences around 128
we chose to stay at a power of 2, the execution time comparison can be seen in Figure 5.2. The
optimum used to be at 64 but we increased the photon count per iteration to offer more accurate
results and had to change the grid accordingly.

Figure 5.2: Different powers of 2 for grid size compared in terms of execution time per iteration.

13

CHAPTER 6
Performance

Test setup

In each scene, photons are bounced until 3.200.000 positions are recorded every iteration of
which we measured the first 50 iterations. Only photons that bounced at least once before and
are diffusely scattered in that bounce are kept for future calculations, which makes the final
number of photons after stream compaction around 300.000. We sample once for each rendered
pixel in each iteration, adding up all photons that the search returns that fall on the object the
raycast ended on (weighted based on distance).

To compare the correctness of our algorithm we used images that were rendered for 250
iterations using the 3D grid and a larger search area as a reference. The relative peak signal-to-
noise ratio difference between images rendered using the previous 3D grid search and our 2D
projection-based search stayed under 1/1000 for all test scenes.

We had the following test scenes:

• Buddha (Figure 6.4): a scene with a high polygon count (≈ 1.000.000)

• Checkerboard (6.7): the geometry in the background is alternating between surfaces that
are sufficiently far from each other to not fall into neighbouring cells, which is bad for
caching

• Cow Bunny Sphere (6.5): both reflective and transmissive glass textures on objects and
diffuse spheres

• Dragon (6.1): base scene on which most time was spent optimising

• Diffuse Dragon (6.2): scene to show weaknesses of projection

• Mega (6.3): due to higher resolution more searches are made

• Tetrahedron (6.6): very simple geometry

14

(a) Reference picture, rendered
for 250 iterations

(b) The scene after 50 iterations
using the 3D grid hashing

(c) The scene after 50 iterations
using our algorithm

Figure 6.1: Dragon Scene

Figure 6.2: Diffuse dragon

Figure 6.3: Mega: scene ren-
dered in full hd instead of
800x800 resolution Figure 6.4: Buddha

Figure 6.5: Cow bunny sphere Figure 6.6: Tetrahedron Figure 6.7: Checkerboard

Measurements

For every scene, the median and average execution time per iteration were measured. We also
counted how many photons the search had to go through per iteration on average and the maxi-
mum memory usage of the program.

All results were measured on a test machine using a Geforce GTX 1070 Ti GPU. Since the

15

search is executed as part of another kernel and not easily separable we measured the execution
time with and without search, the graphs presenting search time contain the difference. Fig-
ure 6.8 shows time spent constructing and filling the data structures, 6.9 contains time spent
searching with the construction times subtracted and 6.10 contains both summed up.

Figure 6.8: Time required per frame to construct and fill the data structures, since thrust::sort is
used by the hash grid algorithm during construction it takes slightly longer.

Figure 6.9: Time required per frame to search for photons (construction times subtracted)

16

Figure 6.10: Time required per frame for photon gathering step summed

While our algorithm takes less time to fill its data structure this part is an order of magnitude
shorter in both cases and doesn’t affect the final result by a lot. For the search itself, both
methods seem to have similar execution times with the exception of the diffuse dragon scene,
where a 3D grid proved more effective.

As was expected due to overlapped surfaces in the projection our algorithm reads through
more photons in total than the 3D counterpart (between 20% and 50% for the test scenes) as
shown in Figure 6.11. This depends on how the scene is structured, Tetrahedron and Buddha for
example show the least difference since most photons are projected on the same surface.

Figure 6.11: Read accesses per frame to the photon data structure during search

The memory usage was consistently 10% higher due to the packed photon structure being
copied as part of construction instead of being sorted in place like for the counterpart.

In the two following subsections we will provide some insights on cache usage for both
methods, but due to our test GPU not fulfilling the architecture requirements for a GPU trace
with NVIDIA Nsight Graphics [8] we can not provide statistics on the matter.

17

Cache lines

Since the photon data structure used is unoptimized and contains data not relevant to the gath-
ering step each photon takes 60 bytes of storage instead of the 20 described by Henrik Wann
Jensen [3]. An L1 cache line is 128 bytes long [7], which means we only load 2 photons in at
once on average. This causes the machine to execute a full load operation (no cache hits) for
most photons during a first read instead of reusing the contents of the cache line and slows down
the algorithm with better spatial locality dis-proportionally.

Cache reuse

Assume a scene with a diffuse cube-shaped exterior with 1 missing side and a light source that
uniformly distributes photons on those 5 surfaces. Using the 3D grid there is an average of ca.
58.5 photons (300.000/(322 ∗ 5)) in each cell containing surfaces and 0 elsewhere and a search
goes through about 9 non-empty cells. For the 2D grid (leaving out parts that are not projected
onto) we average 30.5 and search through ca. 60 cells, this higher density is advantageous for
caching since each thread does its searches in close proximity to each other.

This advantage is offset slightly due to the way the data structure is traversed during consec-
utive searches. The order in which rays are cast is based on the rendered pixels going left-to-right
top-to-bottom. Depending on the current y coordinate each line traverses between 32 (start and
end) and 94 cells, while the same operation in projected space traverses between 90 (52 in x, 38
in y; counting cells intersected by a line is done by simple addition instead of the Pythagorean
theorem) and 270 cells as shown in Figure 6.12. This affects how quickly photons in our cache
become obsolete.

(a) For the 3D grid 94 cells are traversed (32
positive z, 31 positive x then 31 negative z)

(b) In the projected space a large amount of
cells are traversed (ca. 250), making cached
photons become obsolete more quickly

Figure 6.12: Traversal of data structure during search for one line (disregarding refraction and
reflection)

18

CHAPTER 7
Conclusion

During this research, we compared the efficiency of 2 data structures for the use of photon
mapping. This paper shows that neither method is superior in terms of execution time in our
current test environment. While our algorithm seemingly processes more photons in the same
time window, this advantage is offset by extra reads on the main data structure. The following
sections will provide some possible ways to improve the algorithm.

Further optimizations

Finding a better projection should be the first priority of anyone trying to improve on the algo-
rithm. With our (1,1,1) orthographic projection our test scenes only occupied about 60% of the
grid we projected on while choosing a projection with too much self overlap as is the case with
(0,0,-1) slows down the search algorithm immensely.

To that end, it might also be worth to look into splitting the data structure into one for each
diffuse object, which is an option since photons that stop on objects other than the one the camera
ray intersected with are not taken into account for a search.

Improving the photon data structure to only use 20 instead of 60 bytes would allow 6 photons
in a single cache line and maybe yield a stronger execution time improvement on radial search
compared to grid hash.

By implementing the change suggested in Parallel progressive photon mapping on gpus [1]
of only using one photon per cell an index and numbuffer array wouldn’t be needed anymore
thereby saving time during construction and 3 reads per searched line to those data structures
and allowing for a different ordering scheme without having to deal with finding contiguous
areas as shown in Figure 5.1. This change would also enable the more cache-efficient option of
using the camera’s perspective projection as a basis for the algorithm.

Finally changing the grid order and the order in which rays are cast from row first to some-
thing more consistent like the Hilbert curve order could also improve cache usage for photon
gathering.

19

Bibliography

[1] Toshiya Hachisuka and Henrik Wann Jensen. Parallel progressive photon mapping on
gpus. In ACM SIGGRAPH ASIA 2010 Sketches, New York, NY, USA, 2010. Association
for Computing Machinery.

[2] Toshiya Hachisuka, Shinjii Ogaki, and Henrik Wann Jensen. Progressive photon mapping.
In SIGGRAPH ’08: Special Interest Group on Computer Graphics and Interactive Tech-
niques Conference, pages 1–8, New York, NY, USA, 2008. Association for Computing
Machinery.

[3] Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. Taylor & Francis
Group, New York, NY, 2001.

[4] James T Kajiya. The rendering equation. In Proceedings of the 13th annual conference on
Computer graphics and interactive techniques, pages 143–150, 1986.

[5] Vincent C. H. Ma and Michael D. McCool. Low latency photon mapping using block
hashing.

[6] Michael Mara, David Luebke, and Morgan McGuire. Toward practical real-time photon
mapping: Efficient gpu density estimation. In Proceedings of the ACM SIGGRAPH Sym-
posium on Interactive 3D Graphics and Games, I3D ’13, page 71–78, New York, NY,
USA, 2013. Association for Computing Machinery.

[7] Nvidia. Memory transactions. https://docs.nvidia.com/gameworks/conte
nt/developertools/desktop/analysis/report/cudaexperiments/so
urcelevel/memorytransactions.htm. Accessed: 2022-03.

[8] Nvidia. Nsight graphics supported gpus. https://developer.nvidia.com/nsi
ght-graphics-gpus-full-list. Accessed: 2022-03.

[9] Siegfried Reinwald. Fast KNN in Screenspace on GPGPU. Bachelor Thesis, Vienna Uni-
versity of Technology, 2019.

[10] Dominik Schörkhuber. Fast KNN in Screenspace on GPGPU. Bachelor Thesis, Vienna
University of Technology, 2016.

20

https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/sourcelevel/memorytransactions.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/sourcelevel/memorytransactions.htm
https://docs.nvidia.com/gameworks/content/developertools/desktop/analysis/report/cudaexperiments/sourcelevel/memorytransactions.htm
https://developer.nvidia.com/nsight-graphics-gpus-full-list
https://developer.nvidia.com/nsight-graphics-gpus-full-list

[11] Xiaoyan Zhu and Yingting Xiao and Ishaan Singh. Accelerated stochastic progressive
photon mapping on gpu. https://github.com/ishaan13/PhotonMapper. Ac-
cessed: 2022-03.

21

https://github.com/ishaan13/PhotonMapper

	Introduction
	Motivation
	Method

	Related Work
	Technical Background
	Spatial hash grid
	Fast-KNN

	Implementation
	3D Spatial hash
	Radial search

	Optimizations
	Performance
	Conclusion
	Bibliography

